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Abstract

Simulation relations have been discovered in many areas: Computer Science, philosophical
and modal logic, and set theory. However, the simulation condition is strictly a first-order
logic statement. We extend modal logic with modalities and axioms, the latter’s modeling
conditions are the simulation conditions. The modalities are normal, i.e., commute with either
conjunctions or disjunctions and preserve either Truth or Falsity (respectively). The simulations
are considered arrows in a category where the objects are descriptive, general frames. One can
augment the simulation modalities by axioms for requiring the underlying modeling simulations
to be bisimulations or to be p-morphisms. The modal systems presented are multi-sorted and
both sound and complete with respect to their algebraic and Kripke semantics.

1 Introduction

A beneficial property of simulation relations is their ability to allow the transfer of modal formu-
las between logic representations while preserving validity. Simulation relations satisfy a model
theoretic condition which is expressed as a quantified first-order logic statement and underwrites
the transfer. A problem arises in that the simulation condition is strictly a meta-logical condition.
Thus, the original logics involved in the transfer cannot take advantage of this condition. The
consequence is that the model theoretic condition restricting the modal logics has no visibility in
the logics. This runs counter to the notion that model theoretic restrictions or features should
answer to some feature of the logics being modeled. Simulation logic lifts the transfer from a
model theoretic phenomenon to a modal logic phenomenon and does not require any quantifiers,
thus providing the ability to use simulation reasoning at the modal logical level without having
to drop down into the semantic meta-logic. Additionally, modal axioms can be added to further
constrain the underlying condition (e.g., to force it to be a function, p-morphism or bisimulation).
This provides the advantage of expressing simulations such that the modal logic supporting the
simulations can be made multi-sorted; each sort is a “local logic”. The local logics may each be
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different and hence targeted at a particular domain. The simulations, via simulation operators,
provide the ability to transfer logical statements among the domains.

A simulation relation R is a binary relation between two relations H and K in the following
form:

Rxx′ and Hxy implies for some y′(Kx′y′ and Ryy′),
If we consider H as a relation on a set X and K as a relation on a set Y then R can be seen to
be a mapping, or more accurately a morphism, from (X,H) to (Y,K). Thinking of these latter
two tuples as Kripke frames, and seeing as R is a relation, it is natural to ask whether R can be
used to interpret a modal operator which connects two logics, one whose interpretation involves
(X,H) and one whose interpretation involves (Y,K). The simulation condition allows necessary
modal formulas holding at (Y,K) to be translated back along the simulation relation to hold at
(X,H). However, this translation occurs at the meta-logical level of the semantics. Simulation logic
lifts or formalizes this situation so that it can be stated in the object language of a logic through
a simulation axiom. The axiom’s validation condition is precisely the definition of a simulation
relation.

Typically, one would also require the propositional atoms for both logics related by a simulation
axiom to evaluate identically in the frame models. This is known as the totality condition and
amounts to identifying the classical propositional fragments of the modal logics at either end of a
simulation. We leave this element to a separate axiom that can either be added or left off depending
upon the application.

A simulation logic is a collection of modal logics, not necessarily all of the same type, connected
by simulation operators whose interpretation will be handled by simulation relations. One adds
axioms for the simulation operators, in addition to the simulation axiom, to specify additional
model theoretic properties of the interpreting morphisms. We believe the general idea can be
applied to many different kinds of logics by suitably changing the axioms although the axioms will
still remain modal axioms in essence.

Simulations, and their symmetric kin bisimulations, were discovered independently within Com-
puter Science, philosophical logic and set theory [15]. Bisimulations capture a strong notion of
behavioral equivalence. Two systems are bisimilar precisely when their observable behavior is iden-
tical. In the context of labelled transition systems, for example, a relation R between systems P
and Q is a bisimulation if, and only if, two conditions hold: (1) for all labels µ and states p and

q of P and Q, respectively, pR q and p
µ
−A p′ implies there is a Q-state q′ such that q

µ
−A q′ and

p′R q′ and its “converse”, (2) pR q and q
µ
−A q′ implies there is a P -state p′ such that p

µ
−A p′ and

p′R q′. The label µ may be an action, in the case of computer science oriented systems, or a Kripke
relation in the case of modal frames. The relation R is a simulation of P in Q if, and only if, (1)
holds. Thus any bisimulation is a simulation (while the converse does not hold).

Within theoretical Computer Science, bisimulation and refinements to it have received consid-
erable attention; simulation has received relatively little attention by comparison (although some
study has occurred [7]; see Sangiorgi [16], Chapter 6, for an overview).

Simulations, we believe, can have a useful role in computer security in particular. This motivates
their study in this paper. Consider, for instance, the following intuitive scenario. Let P be a
program in a procedural programming language like C and let M be the machine code implementing
P produced by a compiler. “M simulates P” is tantamount to a statement of correctness for the
compiler. If M performing an operation of P reaches state m, there must be a corresponding
semantic state of P , say s, related to m in the simulation relation.
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If one wishes to distinguish secure systems from insecure systems meaningfully, one must ad-
mit the expression of insecure systems into the domain of discourse and the relative weakness of
simulation compared to bisimulation is an advantage. A buffer overflow exploit [17] occurs when
the argument to a procedure call, proc(arg), exceeds a certain size threshold, making it possible for
a malicious agent to inject and then execute arbitrary machine instructions encoded within arg .
While the mechanics underlying such exploits need not concern us here, it should be noted that,
were M bisimilar to P , such exploits would not be possible because the behavior of implementation
of proc(arg) would necessarily be identical to its behavior according to the language semantics.

From a strictly logical perspective, simulation logic can be seen as an extension to partially
ordered modalities [3]. As an example of partially ordered modalities, if in any model we wish to
require that the Kripke relation H is a subset of the Kripke relation K, then this is specified in the
logic by requiring the axiom [k]P ⊃ [h]P . Any model validating this axiom will be such that H
interpreting [h] is a subset of K interpreting [k].

There are two generalizations to the partially ordered modality picture made possible by sim-
ulation logic. The subset relation between two binary relations is a simulation relation and as a
consequence, simulation logic includes the logic of partially ordered modalities. The second is that
a simulation relation can relate two different modal frames whereas the partial order required the
relations be on a common modal frame. Thinking categorically for a moment, a simulation relation
represents an arrow from one model to another. In partially ordered modalities, there is a very slim
category, the partial order. So in effect, we are asking for more than one reason to map between
modalities beyond mere subset inclusion in their interpreting relations.

Modal frames and simulation relations form a category where the simulations are the arrows.
We wished for a logic in which we could reason about these simulations because the applications
indicated above are most naturally expressed using simulations in the reasoning. Since simulations
are relations, the question becomes then, which parts of our logical tool box can be used to represent
this arrow? A simulation relation is just that, a relation. Naturally, it occurs to think of a modal
operator for which the simulation relation can be used for its interpretation. We modify an axiom
in Chellas [6] and Lemmon [13], which is attributed to Geach in an earlier work [8]. The idea is
to use what Chellas termed incestual relations. They yield a series of axioms of a particular form.
The main axiom for simulation logic has one of these forms. However, the Geach axiom uses a
single relation whereas simulation relations use at least three relations, the two modal relations and
the simulation relation.

Simulation logic is a federated or modular logic in that a simulation axiom links two modal
logics where each logic is allowed to have its own axiom set. We term these modal logics “local
logics”. In terms of our compiler example above, one logic is for the source code and one logic is
for the compiled code. The simulation logic allows for logical statements about the source to be
“transferred” to logical statements about the compiled code. We work with normal modal logics,
although an extension to non-normal modal logics is planned.

2 The Logic

The logic is, in the terminology of Chellas, a twist on the logic for incestual relations. We assume
normal modal systems in this paper.
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2.1 Incestual and Simulation Relations

Chellas describes the general schema:

Gk,l,m,n : ♦k�lP ⊃ �m♦nP,

where k, l,m, n are natural numbers. ♦k stands for a string of k instances of the operator ♦, and
similarly for the rest.

As an example,
Tc = G0,0,1,0 : P ⊃ �P

axiomatizes vacuous frames where Rxx′ implies x = x′.
The schema G is valid in all incestual models, or models which satisfy

αRkβ and αRmγ implies for some δ, βRlδ and γRnδ,

where, in sympathy with the operators, Rk stands for k fold relational composition R ◦ · · · ◦R with
relational composition defined as αR ◦Rγ iff there is a β such that αRβ and βRγ. A modification
of this schema defines a simulation from modal logic (now changing notation from Chellas to the
notation to be used throughout this paper).

Definition 2.1.1 When a relation R from the relation H to the relation K satisfies the following
condition,

Rxx′ and Hxy implies for some y′(Kx′y′ and Ryy′),

it is known as a simulation relation.

We prefer to depict the information from this definition in the following confluent diagram,
appropriating the categorical notation of Freyd and Scedrov [11] (although the diagram is not
category theoretic)

∀ ∃
y′

y x′ y x′

x x
RH RH

R K

where one reads from left to right,

for all x, y, x′ such that Rxx′ and Hxy, there exists a y′ such that Kx′y′ and Ryy′.

The schema G for k = l = m = n = 1 is also known as the Geach axiom (left):

♦�P ⊃ �♦P, 〈r〉 [k]P ⊃ [h] 〈r〉P.

Working backwards from the relations in the diagram and the proof of the validity of this modal
formula, we get (now using index k to refer to a particular modal operator and not a natural
number) the formula on the right, where the modal operators 〈r〉, [k], and [h] are interpreted by
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the relations R, K, and H respectively. If we simplify a bit and allow the indices h and k to refer
to a local logic as well as indexing the local logic’s modal operators, and we also assume there are
only the modal operators [k], 〈k〉 in the logic at k and similarly at h, the mental picture of two local
logics h and k semantically connected by a simulation R is

Local Logic h Local Logic k

Model of the
local logic h

Model of the
local logic k

|= |=

R

〈r〉

〈h〉

[h]

〈k〉

[k]

H K

which should look familiar from duality theory for modal logics where typically R is a p-morphism.
Simulation relations are generalizations of p-morphisms. By allowing the p-morphisms to be rela-
tions, we allow for picking up this bit of the model theory of modal logics and expressing it in the
logic.

Notice that the R relation relates two sets of worlds, those involved with H and those involved
with K. We wish to build this observation into the core of the logic. Model theoretically, R relates
two different logics. Simulation relations compose and the identity relation is a simulation relation.
The specification of the logic needs to make this apparent. We do this by using a graph. Our models
are always in the category of descriptive, general frames (DG frames) with simulation relations as
morphisms. The indices h and k above can then be taken to label nodes in a graph for a simulation
logic.

The axiom 〈r〉 [k]P ⊃ [h] 〈r〉P is somewhat curious. P is a formula at k and so [k] may be
applied to it. 〈r〉 maps the result to a formula at h. The consequent first maps P to the logic at
h via 〈r〉 and then applies [h]. In effect, h gets to import some of the language of k but with no
access to the internal structure of the formulas involved. Hence, 〈r〉 is a “wrapper” that allows the
controlled importation into h of formulas from k.

2.2 Simulation Logic

Observing the validity proof of the Geach axiom and seeing that the form of the semantic condition is
the same as the form of the definition for simularity minus the totality condition, we now axiomatize
our base logic. We assume the modal logics are normal. A simulation logic requires we specify
which local logics are to be present. This is done with a graph. There will be a node for each
local logic. The graph also contains an arrow for every simulation relation to be present in any
interpretation of the simulation logic.

A local logic is local in that it is associated with one node in the graph. The accompanying
notion of a global logic does not entail formulas “spanning” two local logics in the sense of P in one
logic entailing Q in another where entailment is an implication arrow (and similarly with other two
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place connectives). Each formula lives entirely within a single local logic although it may contain
subformulas from others.

The graph makes apparent the structure of the collection of the local logics and allows us to
use the arrows to specify which simulation relations must exist in any interpretation of the logical
structure. Since there are several modal operators that can be defined for any single relation,
assigning an arrow for every modal operator can get a bit “noisy”. Using the arrows to specify
which relations must exist in an interpretation simplifies this.

The simulation logic graphs we use have endo-diagrams, each of which is a labeled node and a
single endo-arrow (self-arrow). Under interpretation, this arrow is in a commutative diagram with
an unmentioned empty arrow, in effect, giving the identity arrow a name and indicating that it is
to be a simulation arrow. This is necessary since the models for the logic will be a category whose
identity arrows will be simulations.

The notation dom(r) refers to the domain or source of the arrow r in a graph and cod(r) refers
to the codomain or target of the arrow r. We use the locution 〈k〉 ∈ dom(r) to refer to a modal
connective in the logic associated the node which is the source for the arrow r. The symbol ≡ is
used for bi-implication, i.e., P ≡ Q stands for P ⊃ Q and Q ⊃ P .

We use the following letter conventions:

entity description

h, k, l nodes in a graph G

〈h〉, [h] modalities at node h
and similarly for modalities at nodes k, l

r, s arrows in a graph G

〈r〉, [r] forward-looking modalities associated to arrow r
and similarly for the arrow s

〈·r〉·, [·r ]· backward-looking modalities associated to arrow r
and similarly for the arrow s

H,K,L sets of worlds in an interpretation for the modalities at
h, k, l respectively

H,K,L modal relations interpreting the modalities at h, k, l respectively

(H,H, A) general, descriptive frame for the logic at h
(K,K, B) general, descriptive frame for the logic at k

R,S simulation relations interpreting modalities for arrows r and s

2.3 Axioms and Rules

The axioms schemes are presented below. Axiom A1 is due to Meyer [14], who uses it to simplify
his axiom set. The rest of the axioms are arranged in groups. The graph axioms just tell us that
to specify a simulation logic, we must first specify a simulation graph detailing which local logics
there are to be, which simulation arrows are to appear in any model, and forcing identity arrows
to exist as simulation arrows.

The A axioms are not optional as they describe the form of the local logics. The A axioms
are all normal modal logics and there is one for each node in the graph G. Each local logic may
have its own propositional atoms and local modalities. The B axiom B1 forces the arrows in the
graph to be interpreted as simulation relations and B2 forces composition of arrows to hold. These
two axioms are not optional. The C axioms are optional; they may be added to the B axioms to

6



force the simulation relations to be bisimulations. The D axioms may be added to the B axioms to
force the simulation relation to be p-morphisms, i.e., simulation relation which are also functions.
One can also add their backwards looking counterparts to force bisimulations to be p-morphic in
reverse direction. The E axioms are optional; E1 forces propositional atoms at the domain of a
simulation arrow to be interpreted as they are at the codomain. E2 forces propositional atoms at
the codomain of an arrow be interpreted as they are at the domain.

Graph
S1. A graph G of nodes and arrows

A set D of endo-diagrams
S2. An endo-diagram for

each node in G

Axiom Schemes A: For each node in G, and each endo-diagram arrow i,

A1. all truth functional theorems
of a propositional logic

A2. Modal axioms for a logic
at this node

A3. P ≡ [i]P

Axiom Schemes B: For each arrow each r : h A k and s : k A l in G, and each modal
operator [h] ∈ dom(r), [k] ∈ cod(r),

B1. 〈r〉 [k]P ⊃ [h] 〈r〉P B2. 〈r〉 〈s〉P ≡ 〈s ◦ r〉P

Notice the axiom B1 while being a statement of the logic at h uses subformulas [k]P and P at
k.

Axiom Schemes C: To force the simulation arrows to be bisimulations, use the following
axioms using backward looking possibility, 〈·r〉·, on the simulation arrow. For each arrow r : h A k
and s : k A l in G, and each modal operator [k] ∈ cod(r), [h] ∈ dom(r)

C1. 〈·r〉· [h]P ⊃ [k] 〈·r〉·P C2. 〈·s〉· 〈·r〉·P ≡ 〈·s ◦ r〉·P

Adding both backwards and forwards operators should come with axioms for residuation:

C3. P ⊃ [r] 〈·r〉·P C4. 〈·r〉· [r]P ⊃ P
Axiom Schemes D: To force simulation arrows to be p-morphisms use the following D axioms;

they force the interpreting relation to be a function (just as they would in any normal modal logic
systems):

D1. [r]P ⊃ 〈r〉P D2. 〈r〉P ⊃ [r]P

Axiom Schemes E: The axiom E1 is only necessary if you wish the classical proposition logic
at dom(r) to be included in the logic at cod(r). It is not strictly necessary although it does pick
up the clause in the definition of simulation [5] requiring this of a simulation.

For all propositional letters p,

E1. p ⊃ [r] p E2. p ⊃ [·r ]· p

As a simplification which will not detract from the generality of the logic, we will assume that
each local logic can be interpreted with a single modal relation. This allows us to equate a node
usually labeled h or k with the modal logic at that node.

Definitions and Rules (Normal Systems)

Definition of Possibility: 〈m〉P def
= ¬ [m]¬P, m ∈ {k, r}
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Rules A: For each local logic k,

`k P `k P ⊃ Q
`k Q

`k (P1 ∧ · · · ∧ Pn) ⊃ P
`k ([k]P1 ∧ · · · ∧ [k]Pn) ⊃ [k]P

Rules B: For each r : hA k arrow in G,

`k (P1 ∧ · · · ∧ Pn) ⊃ P
`h ([r]P1 ∧ · · · ∧ [r]Pn) ⊃ [r]P

Rules C: For each r : hA k arrow in G,

`h (P1 ∧ · · · ∧ Pn) ⊃ P
`k ([·r ]·P1 ∧ · · · ∧ [·r ]·Pn) ⊃ [·r ]·P

where the subscripted ` indicates to the local logic to which the proof sign attaches.
We will only be concerned with necessity and possibility operators and mostly the forward

versions since the backwards versions (for bisimulation) are so similar. Other modal operators
definable for the same relation (see [9]) require other kinds of relations than simulation relations
for their “movement” among logics. We relegate these sorts of complications to a sequel paper.

From now on, a simulation logic refers to the axiom schemes S, A, and B, and the Definition of
Possibility, and the rules A and B. We will ignore the axiom schemes and rules C in the interest of
conciseness and because handling those is so similar to B. The axiom schemes D are of interest and
we have modeling conditions for them. The axiom schemes E must be handled quite separately in
the semantics.

2.4 Frames and Models

Each node in a simulation logic’s graph has a local logic associated with it and that local logic must
have a DG frame associated with the local logic. Each arrow of the graph must be associated with
a simulation relation. Each node representing a distinct local logic must be mapped to a distinct
frame object in any interpretation. This sort of informal way of restricting interpretations is the
result of not treating the graph as defining everything in a simulation logic, but the alternative
would make the logic impenetrable.

We work with DG frames, and in keeping with our simplification, assume there is only one
modal relation per frame. More relations for more modalities can be added if needed.

Definition 2.4.1 (Kupke, Kurz, and Venema [12]) A general frame is a structureH = (H,H, A)
such that (H,H) is a Kripke frame and A is a collection of so-called admissible subsets of H that
is closed under the Boolean operations and under the operation [h] : AA A given by:

[h]C
def
= {x ∈ X | Hxy implies y ∈ C}

with 〈h〉C = ¬ [h]¬C where ¬ is set complement. A general frame H is called differentiated if for
all distinct x, y ∈ H there is a ‘witness’ a ∈ A such that y ∈ a while x 6∈ a; tight if whenever y
is not an H-successor of x, then there is a ‘witness’ a ∈ A such that y ∈ a while x 6∈ 〈h〉 a; and
compact if

⋂
A0 6= ∅ for every subset A0 of A which has the finite intersection property. A general

frame is descriptive if it is differentiated, tight, and compact.
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We use the same symbol to refer to the general frame and its relation letting context disam-
biguate the use. As it is noted in [12], tightness can be re-expressed as a relation being point closed,
i.e., Rx (equal to R{x}), the forward image of x under R, is a closed set in the topology generated
by the algebra A of clopen sets.

We use a category of DG frames for a simulation logic.

Definition 2.4.2 A simulation frame category has a descriptive, general frame, called a local
frame, for each node in the graph, and a point closed relation for each arrow. That is, for r : hA k
in the graph, r’s interpretation R : HA K must be point closed.

The corresponding Kripke frame conditions for the logical axioms are

Frame Conditions S:

FS1. A category of local modal
frames and simulations

FS2. An identity arrow for
the arrow in D ∈ D

Frame Conditions A: For each node in G,

FA1. A set of classical worlds FA2. Modal frame conditions
for a logic at this node

Frame Conditions B:

FB1. Rxx′ and Hxy implies
∃y′(Kx′y′ and Ryy′)

FB2. Frame category contains
all compositions

Frame Conditions C:

FC1. Rxx′ and Kx′y′ implies
∃y(Hxy and Ryy′)

FC2. Frame category contains
all compositions

Frame Conditions D:

FD1. ∃y(Rxy) FD2. (Rxy and Rxz) implies
y = z

with the convention that upper case script relation letters interpret modalities using lower case
Roman letters. Each simulation frame category interpreting a simulation logic will have the condi-
tions matching the axioms. The frame conditions S, A, and B are always assumed, the others are
required if the corresponding axioms are present in the modeled local logic.

We will use slightly different frames for axioms E1 and E2; the algebras in the local frames
will contain constants, one for every atomic proposition of the local logic for which the local frame
provides a model.

The following proposition allows us to use one DG frame per local logic.

Proposition 2.4.3 There are no provable instances of formulas of the form P •Q for • ∈ {⊃,∧,∨}
with P in one local logic and Q in different local logic.

The proof is an easy induction on the axiom schemes A-E and rules. The axioms B1 and C1
are the most interesting. Considering B1, P and [k]P is in the local logic at k while 〈r〉 [k]P is in
the local logic at h. The formulas 〈r〉P and [h] 〈r〉P are in the local logic at h. The consequence is
that no formula in the logic has a binary connective between formulas in two different local logics.
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Note, we stated the above proposition in terms of formula “instances” rather than formulas
because it is possible to attach a local logic to more than one node in the graph. In effect, this
would give more than one instance of the logic in the entire simulation logic.

In preparation for soundness, we must show that the definition of 〈r〉 in terms of [r] makes sense
in that it does not clash with the definition of interpretation. To wit, let R : hA k be a simulation:

x ∈ H |= ¬ [r]¬P iff x ∈ H 6|= [r]¬P
iff there exists y ∈ K(Rxy and y 6|= ¬P )

iff there exists y ∈ K(Rxy and y |= P )

iff x ∈ H |= 〈r〉P

A simulation category model has the usual sort of Kripke DG frames for every node with a
valuation for each node. The arrows are the simulation relations.

Definition 2.4.4 A simulation category model is a simulation frame category with a valuation
and a local frame for each local logic. The local frame and its valuation are called a local model. A
valuation specifies a collection of points in the local frame where the atomic propositions are true.

We rely on heterogeneous (multisorted) algebras [4] for the free algebra construction. The
categorical version is most easily accessible in [1] who attribute the multisorted (non-categorical)
case to [4].

Definition 2.4.5 (Birkhoff and Lipson [4]) A heterogeneous algebra is a system A = [L , F ]
in which

1. L = {Si} is a family of non-void sets Si of different types of elements, each called a phylum
of the algebra A. The phyla Si are indexed by some set I; i.e., Si ∈ L for i ∈ I (or are called
by appropriate names).

2. F = {fα} is a set of finitary operations operations, where each fα is a mapping

fα : Si(1,α) × Si(2,α) × · · · × Si(n(α),α) A Sp(α)

for some non-negative integer n(α), function iα : j A i(j, α) from n(α) = {1, 2, . . . , n(α)} to
I, and p(α) ∈ I. The operations fα are indexed by some set Ω; i.e., fα ∈ F for α ∈ Ω (or are
called by appropriate names).

Definition 2.4.6 A simulation algebra appropriate for a simulation logic is a heterogeneous algebra
with a modal algebra, called a local modal algebra, for each node of a graph, identity modal
operators for each node, and simulation operators 〈r〉 and [r] for every arrow r (including identity
arrows) of the graph. If the bisimulation axioms are used, then there are operators 〈·r〉· and [·r ]· in
the opposite direction than 〈r〉 and [r]. For r : hA k in the graph,

• [r](a ∧ b) = [r] a ∧ [r] b;

• [r]>k = >h, for > the top of Boolean lattice;

• 〈r〉 [k] a ≤ [h] 〈r〉 a;
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• 〈r〉 〈s〉 a = 〈s ◦ r〉 a;

• [i] a = a, for i the arrow in an endo-diagram;

• if axioms schemes C are used

– 〈·r〉· [h] a ≤ [k] 〈·r〉· a, if axiom schemes C are used;

– 〈·s〉· 〈·r〉· a = 〈·s ◦ r〉· a, if axiom schemes C are used;

– a ≤ [r] 〈·r〉· a,

– 〈·r〉· [r] a ≤ a.

• 〈r〉 a = [r] a, if axiom schemes D are used.

The axioms E1 and E2 will be handled in the next subsection where we must add constant
operations and functions to help interpret the propositional atoms.

Appropriate simulation algebras give a “localization” view of heterogeneous algebras which is
isomorphic to the definition given above. Each phylum Si with operators defined only upon Si is
a local modal algebra. The operations associated with r : h A k of the graph map from a local
modal algebra to a local modal algebra. This stratifies the heterogeneous simulation algebra and
treats every local modal algebra as an object in the surrounding simulation algebra.

Algebraic versions of soundness and completeness depend on the Lindenbaum-Tarski (LT) al-
gebra. We must first show that the operators all respect the congruence of bi-implication induced
on the local word algebras by the local logics. The only operators not already covered in previous
modal algebraic work are the simulation operators.

Lemma 2.4.7 The simulation operators respect bi-equivalence.

Proof: We only show the proof for 〈r〉, the other simulation operators use similar principles.

`k P ⊃ Q implies `k ¬Q ⊃ ¬P contraposition

implies `h [r]¬Q ⊃ [r]¬P rule Mediate Necessitation

implies `h ¬ [r]¬P ⊃ ¬ [r]¬Q contraposition

iff `h 〈r〉P ⊃ 〈r〉Q Definition of Possibility

It easily follows that `k P ≡ Q implies `h 〈r〉P ≡ 〈r〉Q.

Next, we must show that the LT algebra is actually a simulation algebra. The only operators
that are at issue are the simulation operators.

Lemma 2.4.8 The LT simulation operators satisfy the required properties for a simulation algebra.

Proof: We only show the proofs for [r], the rest use similar principles. Setting n to 0 in the rule
Mediate Necessitation, yields `k > implies `h [h]>. Hence `h > ⊃ [h]>. It is always the case that
`h [h]> ⊃ >, hence [h]> ≡ > and so [h][>] = [>] where [>] is the equivalence class of >.

That `h [r]P ∧ [r]Q ⊃ [r](P ∧ Q) follows immediately from `k P ∧ Q ⊃ P ∧ Q and the rule
Mediate Necessitation. Next, `k P ∧ Q ⊃ P and `k P ∧ Q ⊃ Q, so `h [r](P ∧ Q) ⊃ [r]P and
`h [r](P ∧ Q) ⊃ [r]Q. Hence, `h [r](P ∧ Q) ⊃ [r]P ∧ [r]Q, and so [r][P ∧ Q] = [r][P ] ∧ [r][Q].
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Corollary 2.4.9 The LT heterogeneous algebra is a simulation algebra.

Proof: (Proof Outline) The free heterogeneous algebra is the usual algebra of equivalence classes of
terms in the variables as generators. One runs the induction procedure to get the word algebras over
all the local logics simultaneously [4], then divide out by the equalities in each algebra. Proposition
2.4.3 shows that no additional sorts over and above the local modal algebra carrier sets are necessary.
Lemma 2.4.7 shows that the replacement property for the bi-implication congruence holds for each
operator. Finally, Lemma 2.4.8 shows each LT operators satisfy the simulation algebra axioms.

Theorem 2.4.10 Simulation Logic is sound with respect to the algebraic and simulation frame
category models.

Proof: We need only check the simulation axiom. Soundness over the algebraic models is the usual
induction starting with a valuation into a simulation algebra and then using the fact that the LT
algebra is the free algebra in the heterogeneous class of simulation algebras. The free heterogeneous
algebras are then used to generate the universal arrow for any interpretation into a heterogeneous
modal algebra thus validating the axioms and rules.

We check axiom B1 for Kripke models, the rest use similar principles. Assume x |= 〈r〉 [k]P .
To show, x |= [h] 〈r〉P , we further assume Hxy for arbitrary y. From the first assumption, there
is some x′ such that Rxx′ and x′ |= [k]P . Since, Hxy and Rxx′, the frame condition FB1 yields
Kx′y′ and Ryy′ for some y′ and hence y′ |= P . By definition, y |= 〈r〉P . Since the choice of y was
arbitrary, by definition x |= [h] 〈r〉P .

The canonical frame is generated by the LT algebra; the frame’s admissible sets are those of
the carrier set of the representation algebra (of the LT algebra) using the representation function
β (see below). Let MA(h),MA(k) stand for the local modal algebras and CF(h),CF(k) stand for
the canonical frames at h and k respectively. To get a frame category from the LT modal algebra
requires that one take the (dual) Stone spaces containing all the maximal filters of each local algebra
and define the Kripke relations with:

Hxy iff [h] a ∈ x implies a ∈ y.

Since [h] and 〈h〉 are DeMorgan duals of each other, H admits an equivalent definition:

Hxy iff a ∈ y implies 〈h〉 a ∈ x.

These same definitions work for the canonical relation R for r : h A k where now a ∈ MA(k),
[r] a, 〈r〉 a ∈ MA(h), x ∈ CF(h) and y ∈ CF(k).

The modal completeness argument is the usual algebraic argument [10] using contraposition and
the frame argument uses the canonical frame derived from a representation theorem [10, 2]. The
modal representation theorem represents a modal algebra as an algebra of sets using the canonical
frame (Stone space) of the algebra. One defines the 1-1 homomorphism β on the Boolean algebra
A = (A,∧,∨,¬) by:

βa = {x | a ∈ x and x is a maximal filter}.

It is not hard to show that β [h] a = [h]βa and β 〈h〉 a = 〈h〉βa. Set union, intersection, and set
complement interpret the classical logic logic connectives ∨, ∧, and ¬. The only question is the
status of 〈r〉, [r] for r : hA k.
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Lemma 2.4.11 For a ∈ MA(k) and 〈r〉 a ∈ MA(h),

β [r] a = [r]βa and β 〈r〉 a = 〈r〉βa.

Proof: We show the proof of β 〈r〉 a = 〈r〉βa, the other is similar. From right to left, let x ∈ CF(h)
and x ∈ 〈r〉βa. There is some y ∈ CF(k) such that Rxy and y ∈ βa, hence a ∈ y. Since Rxy iff
b ∈ y implies 〈r〉 b ∈ x, we have 〈r〉 a ∈ x. So x ∈ β 〈r〉 a. Going the other direction, let x ∈ β 〈r〉 a,
so that 〈r〉 a ∈ x. Further, let y2 = 〈r〉−1−x where −x refers to the set complement of x and is
a maximal ideal. y2 is an ideal: b1, b2 ∈ y2 iff 〈r〉 b1, 〈r〉 b2 ∈ −x iff 〈r〉 b1 ∨ 〈r〉 b2 ∈ −x (〈r〉 is a
normal operator) iff 〈r〉(b1 ∨ b2) ∈ −x iff b1 ∨ b2 ∈ y2. Hence if a ∈ y2 then 〈r〉 a ∈ −x which is a
contradiction. a↑ (the principle filter determined by a) and y2 are disjoint, we can separate them
with a maximal filter-ideal pair (y,−y) with a ∈ y and y2 ⊆ −y using Zorn’s Lemma; so y ∈ βa.
Let b ∈ y. If 〈r〉 b ∈ −x, then b ∈ −y and that is a contradiction. So 〈r〉 b ∈ x. By definition, Rxy
holds and a ∈ y, so x ∈ 〈r〉βa.

Theorem 2.4.12 Simulation Logic is complete with respect to the simulation algebras and the
simulation category models.

Proof: From Proposition 2.4.3, we need only concern ourselves with formula (instances) which
sit entirely within a single local logic. So one presents the formula instance at issue and then
picks the local logic for which it must be determined whether it is a theorem. The argument is a
contraposition argument. Using the LT heterogeneous algebra and its canonical frame category.

Note that any theorem without an implication as the main connective can be outfitted with
one because ` P iff ` T ⊃ P where T is the truth constant in a local logic. Hence we need
only check implications. Suppose 6` P ⊃ Q, then [P ] 6≤ [Q] in the LT algebra where [P ], [Q] are
the bi-implicational equivalence classes. This along with Corollary 2.4.9 is enough for algebraic
completeness.

For frame completeness, there is maximal separating filter x such that [P ] ∈ x and [Q] 6∈ x,
i.e., x ∈ β[P ] and x 6∈ β[Q], so x |= P and x 6|= Q. Therefore there is a local model falsifying the
non-theorem, and hence a simulation category model falsifying the non-theorem.

Taking the contrapositive in the algebraic and frame cases yields the required result.

2.5 The Axiom Schemes E

The axioms E1 and E2 requires some special treatment. We concentrate on E1 since E2 is entirely
similar. The algebra will now have a collection of constant operators, one for each propositional
atom in the language.

Definition 2.5.1 An E local modal algebra is a local modal algebra with a collection of constant
operations. Note that two constant operations, being functions, can point to the same element of
the local modal algebra. The Lindenbaum-Tarski E local modal algebra has each constant operation
pointing out the equivalence class of the propositional atom to which it attached. In symbols, if p
is a propositional atom, then its constant, nullary operation, σp, is such that σp = p in the word
algebra of the logic and σp = [p] in the LT algebra. In addition to any axioms necessary for the
local modal logic, we add the axiom

σp ≤ [r]σp
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for an arrow r in the diagram to another node. This effectively forces [[p]] ≤ [r][[p]] for any interpre-
tation [[−]]. We also require the logic at cod(r) to contain at least the same propositional atoms as
those at dom(r).

Definition 2.5.2 A E local modal frame is a descriptive, general frame with a collection of constant
functions, fp, one for each propositional atom. A constant function selects an element of the set
algebra.

Fix a local modal algebra. A modal valuations vary over what gets assigned to the propositional
atoms. Here, the valuations must be consistent with the nullary operations associated with each
atom. We get the variation necessary for valuations by choosing different local modal algebras
which agree on everything except the nullary operations. So the variation gets satisfied at a slightly
higher level. A similar statement holds for local modal frames. The inductive definition generating
interpretations from valuations remains the same and hence the restriction on valuations gets
transferred to interpretations.

Definition 2.5.3 A E local modal algebra valuation, [[−]] must take every propositional atom to
an element of the carrier set pointed to by the nullary operation for that atom, i.e., if σp = a,
then [[p]] = a. Similarly, for a E local modal frame and valuations [[−]], we demand [[p]] = C if
fp = C. Also, we demand that for r : h A k, the r interpreting relation R must respect the
constant functions in the sense that x ∈ fp at the local frame for h and Rxy implies y ∈ fp at the
local frame for k.

For the LT algebra, σp = p in the word algebra forces σp = [p] in the LT algebra. The result is
that we get the same LT algebra as we would have without the nullary constants. The universal
property of the free algebra with respect to unique maps to the other E local modal algebras
are unaffected since the restriction on interpretations will force the unique maps to choose the
same elements of the local modal algebras to which the nullary operations point for the respective
propositional atoms. In the freeness diagram below, p indicates some propositional atom in the
language, σFAh is the carrier set of the local modal logic for h inside of the free algebra A, B is
some other appropriate simulation algebra, and f is an induced interpretation from the freeness
property of A,

SL(h, k ∈ G) A = ({FAh, FAk}, σFAh
p , σFAk

p ∈ Ops)

B = ({Bh, Bk}, σBh
p , σBk

p ∈ Ops)

η

f
g

The algebra B has no notion of propositional atoms. The σp, being operations, are preserved by g.
Hence, η(p) = σFAh

p and g(η(p)) = g(σFAh
p ) = σFBh

p . Since the diagram commutes, f(p) = σFBh
p .

The extension to simulation algebras and simulation category models are called E simulation
algebras and E simulation category models.
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Theorem 2.5.4 Simulation logics with the E axioms are sound and complete with respect to E
simulation algebras and E simulation category models.

3 Some Extensions of the Concept

3.1 Stone Spaces and Their Morphisms

The general scheme of lifting morphisms to create multi-sorted logics connected via modal operators
appears to have a wider potential than the simulation logic presented in this paper. In effect, there
was nothing special per se about using simulation relations other than they work very well in terms
of relating modal logics. Suppose we consider the category of Stone spaces and their morphisms
and ask what would the multi-sorted logic look like. We clearly want the axioms D1 and D2 and
we always want to use descriptive general frames. The multi-sorted logic has a modal operator for
every morphism in the graph, that morphism is always to be a continuous map. Since the one-point
sets are closed in Stone spaces, the continuous maps are closed relations.

3.2 Partially-ordered Modalities

In [3], we presented a logic system with partially-ordered modalities. That system can be presented
in the current framework by setting all the simulation relations to the identity relation. The main
axiom

[k]P ⊃ [h]P, h ≤ k

then is a direct consequence since 〈i〉P ≡ P for i being the sole arrow in an endo-diagram.

3.3 Other Frame Relating Principles

The axiom
〈s〉 [k]P ⊃ [h] 〈r〉P

holds just when for every r, s : hA k in the graph, the frame category has

Sxx′ and Hxy implies there exists y′(Kx′y′ and Ryy′).

The axiom
[r] [k]P ⊃ [h] [r]P

holds just when for every r, s : hA k in the graph, the frame category has

Ryz and Hxy implies there existsx′(Kx′z and Rxx′).

3.4 Relating the Simulation Relations

We can use partially-ordered modalities [3] in the many-sorted case by using the axiom from that
paper

[s]P ⊃ [r]P

for r, s : hA k in the graph of the logic; hence, the interpreting relations R,S : HA K are between
local frames such that R ⊆ S.
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Let (H,H, A) be the local frame at h and (K,K, B) be the local frame at k. If we wish to
relate R with S via a higher-order simulation, this can be accomplished by reinterpreting the first
axiom for the previous subsection. A higher-order simulation from R to S is a pair of relations,
T ⊆ H ×H and T ′ : K ×K such that

T xx′ and Rxy implies there exists y′(Sx′y′ and T ′yy′).

This underwrites the axiom
〈t〉 [s]P ⊃ [r] 〈t′〉P.

The property of Proposition 2.4.3 still obtains. Using log(h) and log(k) to refer to the logics at
those nodes of the graph, 〈t〉 : log(h) A log(h) and 〈t′〉 : log(k) A log(k), and let P ∈ log(k); hence
〈t′〉P ∈ log(k). Since r : h A k in the graph, [r] : log(k) A log(h) and so [r] 〈t′〉P ∈ log(h). Since
s : hA k, [s]P ∈ log(h) and 〈t〉 [s]P ∈ log(h). The entire formula is in log(h).

4 Conclusion

We have shown that modal logic can be extended to include simulation relations as morphisms
in their Kripke semantics. This necessitates a multi-sorted logic composed of local logics linked
by modal operators for which the simulation relations provide morphisms between models. The
general approach appears to be transferrable to other logics by observing that their models usually
sit within a category of models which has its own notion of morphism. The model morphisms are
to be looked at as Kripke relations spanning models. The fact that many times these morphisms
are functions and may have other properties leads to axioms constraining their modal connective
counterparts. In fact, many of the relational properties used in modal logics and their related modal
axioms can be lifted to provide a toolbox of axioms for modalities that span logics.

One of the central features of the logics presented in this paper is that every formula sat entirely
within a single local logic. Complete generality would require that feature to be relaxed and allow
formulas to span local logics. We anticipate the graphs that we used in formulating simulation
logics will be made more complicated, in effect, promoting them to be the categorical notion of
sketch [18]. In this paper, we only use graphs and identity arrows to help specify a simulation logic
and have no need for general diagrams, cones, and cocones of a sketch. For instance, one might
have formulas of the form P ∧ Q where P and Q are in separate logics. Providing models for these
sorts of logics will require constructions that produce new frames from old frames.
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